Uncertainty Modeling for Data Mining: A Label Semantics Approach.pdf

Uncertainty Modeling for Data Mining: A Label Semantics Approach.pdf
 

书籍描述

内容简介
Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning. Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China.

购买书籍

当当网购书 京东购书 卓越购书

PDF电子书下载地址

相关书籍

搜索更多