Rf Power Amplifiers, Second Edition.pdf

Rf Power Amplifiers, Second Edition.pdf
 

书籍描述

内容简介
This new edition covers the theory and design techniques of the major types of radio-frequency power amplifiers (also named resonant DC-to-AC power inverters). Included are descriptions of Class A, B, AB, C, D, E, DE, and F RF power amplifiers which are used primarily in radio transmitters. The second edition has been completely revised and updated for a new generation of students and design engineers. Some examples are replaced by new and better examples, with many more added. Some end-of-chapter problems are replaced by new problems, and more have been added. More rigorous treatment of many concepts is seen in all chapters (plus all typographical errors have been corrected since the first edition). Chapter 1: Introduction containsmore in-depth coverage of radio communication systems, statistics of transmitter output power level and long-term average transmitter efficiency, and transmitter noise. Many students who take related classes based on the book do not have sufficient background in communications systems, and this updated chapter will help them in their studies. Two brand chapters have been added - the first -Chapter 11 - describes RF power amplifiers with dynamic power supplies. It details the improvement of the efficiency of nearly linear RF power amplifiers (Class A and AB) by the application of a variable supply voltage of RF power amplifiers, as opposed to fixed voltage power supplies, where a variable envelope signals are amplified, such as AM signals. This chapter also covers the applications of variable voltage supply as an AM modulator for RF power amplifiers, where the transistors are operated as switches. The second brand new chapter (Chapter 12) describes RF LC oscillators; an integral part of RF transmitters and also RF receivers. Chapter 8 (Class F RF Power Amplifiers) has been completely revised to cover the latest research results in this area. Old examples are replaced by new examples based on the new equations. Chapter 9 (Linearization and Efficiency Improvements of RF Power Amplifiers) has been extended to include new research results. In the author's experience, some students who take classes based on the first edition do not have sufficient background in electronics. To resolve this, he has added descriptions of operation of transistors as dependent-current sources and as switches. The author has added coverage of transistor current and voltage stresses, and information on the long-term average efficiency of RF transmitters.

目录
Preface xvi About the Author xix List of Symbols xxi 1 Introduction 1 1.1 Radio Transmitters 1 1.2 Batteries for Portable Electronics 2 1.3 Block Diagram of RF Power Amplifiers 3 1.4 Classes of Operation of RF Power Amplifiers 6 1.5 Waveforms of RF Power Amplifiers 8 1.6 Parameters of RF Power Amplifiers 9 1.7 Transmitter Noise 15 1.8 Conditions for 100% Efficiency of Power Amplifiers 16 1.9 Conditions for Nonzero Output Power at 100% Efficiency of Power Amplifiers 20 1.10 Output Power of Class E ZVS Amplifiers 23 1.11 Class E ZCS Amplifiers 26 1.12 Antennas 28 1.13 Propagation of Electromagnetic Waves 31 1.14 Frequency Spectrum 33 1.15 Duplexing 35 1.16 Multiple-Access Techniques 36 1.17 Nonlinear Distortion in Transmitters 38 1.18 Harmonics of Carrier Frequency 39 1.19 Intermodulation Distortion 42 1.20 AM/AM Compression and AM/PM Conversion 48 1.21 Dynamic Range of Power Amplifiers 48 1.22 Analog Modulation 50 1.23 Digital Modulation 70 1.24 Radars 73 1.25 Radio-Frequency Identification 75 1.26 Summary 76 1.27 References 79 1.28 Review Questions 81 1.29 Problems 83 2 Class A RF Power Amplifier 85 2.1 Introduction 85 2.2 Power MOSFET Characteristics 85 2.3 Short-Channel Effects 91 2.4 Circuit of Class A RF Power Amplifier 102 2.5 Waveforms in Class A RF Amplifier 105 2.6 Energy Parameters of Class A RF Power Amplifier 115 2.7 Parallel-Resonant Circuit 126 2.8 Power Losses and Efficiency of Parallel Resonant Circuit 129 2.9 Class A RF Power Amplifier with Current Mirror 132 2.10 Impedance Matching Circuits 138 2.11 Class A RF Linear Amplifier 142 2.12 Summary 146 2.13 References 148 2.14 Review Questions 149 2.15 Problems 150 3 Class AB, B, and C RF Power Amplifiers 153 3.1 Introduction 153 3.2 Class B RF Power Amplifier 153 3.3 Class AB and C RF Power Amplifiers 172 3.4 Push-Pull Complementary Class AB, B, and C RF Power Amplifiers 190 3.5 Transformer-Coupled Class B Push-Pull RF Power Amplifier 199 3.6 Class AB, B, and C RF Power Amplifiers with Variable-Envelope Signals 205 3.7 Summary 208 3.8 References 210 3.9 Review Questions 211 3.10 Problems 212 4 Class D RF Power Amplifiers 213 4.1 Introduction 213 4.2 MOSFET as a Switch 214 4.3 Circuit Description of Class D RF Power Amplifier 216 4.4 Principle of Operation of Class D RF Power Amplifier 220 4.5 Topologies of Class D Voltage-Source RF Power Amplifiers 228 4.6 Analysis 230 4.7 Bandwidth of Class D RF Power Amplifier 240 4.8 Operation of Class D RF Power Amplifier at Resonance 243 4.9 Class D RF Power Amplifier with Amplitude Modulation 250 4.10 Operation of Class D RF Power Amplifier Outside Resonance 252 4.11 Efficiency of Half-Bridge Class D Power Amplifier 260 4.12 Design Example 269 4.13 Transformer-Coupled Push-Pull Class D Voltage-Switching RF Power Amplifier 272 4.14 Class D Full-Bridge RF Power Amplifier 278 4.15 Phase Control of Full-Bridge Class D Power Amplifier 284 4.16 Class D Current-Switching RF Power Amplifier 287 4.17 Transformer-Coupled Push-pull Class D Current-Switching RF Power Amplifier 292 4.18 Bridge Class D Current-Switching RF Power Amplifier 300 4.19 Summary 305 4.20 References 307 4.21 Review Questions 309 4.22 Problems 310 5 Class E Zero-Voltage-Switching RF Power Amplifiers 313 5.1 Introduction 313 5.2 Circuit Description 314 5.3 Circuit Operation 316 5.4 ZVS and ZDS Operation of Class E Amplifier 319 5.5 Suboptimum Operation 320 5.6 Analysis 321 5.7 Drain Efficiency of Ideal Class E Amplifier 329 5.8 RF Choke Inductance 329 5.9 Maximum Operating Frequency of Class-E Amplifier 330 5.10 Summary of Parameters at D = 0.5 331 5.11 Efficiency 332 5.12 Design of Basic Class E Amplifier 336 5.13 Impedance Matching Resonant Circuits 340 5.14 Class E ZVS RF Power Amplifier with Only Nonlinear Shunt Capacitance360 5.15 Push-Pull Class E ZVS RF Power Amplifier 365 5.16 Class E ZVS RF Power Amplifier with Finite DC-Feed Inductance 367 5.17 Class E ZVS Amplifier with Parallel-Series Resonant Circuit 371 5.18 Class E ZVS Amplifier with Nonsinusoidal Output Voltage 374 5.19 Class E ZVS Power Amplifier with Parallel Resonant Circuit 380 5.20 Amplitude Modulation of Class E ZVS RF Power Amplifier 386 5.21 Summary 389 5.22 References 390 5.23 Review Questions 400 5.24 Problems 401 6 Class E Zero-Current-Switching RF Power Amplifier 403 6.1 Introduction 403 6.2 Circuit Description 403 6.3 Principle of Operation 404 6.4 Analysis 408 6.5 Power Relationships 413 6.6 Element Values of Load Network 413 6.7 Design Example 414 6.8 Summary 416 6.9 References 416 6.10 Review Questions 417 6.11 Problems 418 7 Class DE RF Power Amplifier 419 7.1 Introduction 419 7.2 Analysis of Class DE RF Power Amplifier 419 7.3 Components 427 7.4 Device Stresses 431 7.5 Design Equations 431 7.6 Maximum Operating Frequency 431 7.7 Class DE Amplifier with Only One Shunt Capacitor 433 7.8 Output Power 438 7.9 Cancellation of Nonlinearities of Transistor Output Capacitances 438 7.10 Amplitude Modulation of Class DE RF Power Amplifier 439 7.11 Summary 439 7.12 References 440 7.13 Review Questions 442 7.14 Problems 443 8 Class F RF Power Amplifiers 445 8.1 Introduction 445 8.2 Class F RF Power Amplifier with Third Harmonic 449 8.3 Class F35 RF Power Amplifier with Third and Fifth Harmonics 471 8.4 Class F357 RF Power Amplifier with Third, Fifth, and Seventh Harmonics 483 8.5 Class FT RF Power Amplifier with Parallel-Resonant Circuit and Quarter-Wavelength Transmission Line 484 8.6 Class F2 RF Power Amplifier with Second Harmonic 492 8.7 Class F24 RF Power Amplifier with Second and Fourth Harmonics 508 8.8 Class F246 RF Power Amplifier with Second, Fourth, and Sixth Harmonics 519 8.9 Class FK RF Power Amplifier with Series-Resonant Circuit and Quarter-Wavelength Transmission Line 520 8.10 Summary 526 8.11 References 527 8.12 Review Questions 529 8.13 Problems 9 Linearization and Efficiency Improvements of RF Power Amplifiers 533 9.1 Introduction 533 9.2 Predistortion 535 9.3 Feedforward Linearization Technique 537 9.4 Negative Feedback Linearization Technique 540 9.5 Envelope Elimination and Restoration 545 9.6 Envelope Tracking 547 9.7 The Doherty Amplifier 550 9.8 Outphasing Power Amplifier 557 9.9 Summary 561 9.10 References 562 9.11 Review Questions 571 9.12 Problems 572 10 Integrated Inductors 573 10.1 Introduction 573 10.2 Skin Effect 574 10.3 Resistance of Rectangular Trace 576 10.4 Inductance of Straight Rectangular Trace 579 10.5 Meander Inductors 581 10.6 Inductance of Straight Round Conductor 585 10.7 Inductance of Circular Round Wire Loop 588 10.8 Inductance of Two-Parallel Wire Loop 588 10.9 Inductance of Rectangle of Round Wire 589 10.10 Inductance of Polygon Round Wire Loop 589 10.11 Bondwire Inductors 590 10.12 Single-Turn Planar Inductor 592 10.13 Inductance of Planar Square Loop 595 10.14 Planar Spiral Inductors 595 10.15 Multi-Metal Spiral Inductors 613 10.16 Planar Transformers 614 10.17 MEMS Inductors 616 10.18 Inductance of Coaxial Cable 618 10.19 Inductance of Two-Wire Transmission Line 618 10.20 Eddy Currents in Integrated Inductors 618 10.21 Model of RF Integrated Inductors 620 10.22 PCB Inductors 622 10.23 Summary 625 10.24 References 626 10.25 Review Questions 632 10.26 Problems 633 11 RF Power Amplifiers with Dynamic Power Supply 635 11.1 Introduction 635 11.2 Dynamic Power Supply 635 11.3 Amplitude Modulator 636 11.4 DC Analysis of PWM Buck Converter Operating in CCM 637 11.5 Synchronous Buck Converter as Amplitude Modulator 679 11.6 Multiphase Buck Converter 686 11.7 Layout 688 11.8 Summary 690 11.9 References 693 11.10 Review Questions 699 11.11 Problems 700 12 Oscillators 701 12.1 Introduction 701 12.2 Classification of Oscillators 702 12.3 General Conditions for Oscillations 703 12.4 Topologies of LC Oscillators with Inverting Amplifier 718 12.5 Op-Amp Colpitts Oscillator 722 12.6 Single-Transistor Colpitts Oscillator 724 12.7 Common-Source Colpitts Oscillator 726 12.8 Common-Gate Colpitts Oscillator 737 12.9 Common-Drain Colpitts Oscillator 751 12.10 Clapp Oscillator 761 12.11 Crystal Oscillators 763 12.12 CMOS Oscillator 770 12.13 Hartley Oscillator 771 12.14 Armstrong Oscillator 774 12.15 LC Oscillators with Noninverting Amplifier 777 12.16 Cross-Coupled LC Oscillators 783 12.17 Wien-Bridge RC Oscillator 790 12.18 Oscillators with Negative Resistance 796 12.19 Voltage-Controlled Oscillators 801 12.20 Noise in Oscillators 802 12.21 Summary 813 12.22 References 815 12.23 Review Questions 821 12.24 Problems 822 13 Appendices 823 13.1 Appendix A SPICE Model of Power MOSFETs 823 13.2 Appendix B Introduction to SPICE 827 13.3 Appendix C Introduction to MATLAB R 830 13.4 Appendix D Trigonometric Fourier Series 834 13.5 Appendix E Circuit Theorems 838 13.6 Appendix F SABER Circuit Simulator 842 Answers to Problems 69

购买书籍

当当网购书 京东购书 卓越购书

PDF电子书下载地址

相关书籍

搜索更多