CUDA并行程序设计:GPU编程指南.pdf

CUDA并行程序设计:GPU编程指南.pdf
 

书籍描述

编辑推荐
CUDA开发者社区技术总监亲自撰写,英伟达中国首批CUDA官方认证工程师翻译,译著双馨
全面、详实地讲解了CUDA并行程序设计的技术知识点和编程方法,包含大量实用代码示例,是目前学习CUDA编程最权威的著作之一

作者简介
Shane Cook CUDA开发者社区技术总监,有20余年行业经验。当认识到异构系统以及CUDA对于已有串行和并行编程技术的革命性冲击时,创立了CUDA开发者社区(欧洲的咨询公司,专门帮助企业重构代码以充分利用GPU硬件的威力)。他专注于高性能软件开发、GPU利用、嵌入式系统,并参与了多个C语言编程标准的建设,包括广泛应用于汽车软件行业的汽车工业软件MISRA Safer C。他常为德国汽车行业、国防承包行业、北电网络以及福特汽车公司等机构或蓝筹股公司提供专业咨询服务和软件定制开发。

译者简介
苏统华 博士,英伟达中国首批CUDA官方认证工程师,主要研究领域包括大规模并行计算、模式识别、物联网智能信息处理、智能媒体交互与计算等。2013年,其所开发的CUDA识别算法,在文档分析和识别国际会议(ICDAR’ 2013)上获得手写汉字识别竞赛的双料冠军。另外,他在手写汉字识别领域建立了里程碑式的工作,论文他引300余次;他所建立的HIT-MW库,为全世界100多家科研院所采用;目前负责国家自然科学基金项目2项。著有英文专著《Chinese Handwriting Recognition: An Algorithmic Perspective》(德国施普林格出版社),CUDA相关译作2本(机械工业出版社)。现任哈尔滨工业大学软件学院高级讲师、硕士生导师。

目录
目录
致中国读者
译者序
前 言
第1章 超级计算简史 1
1.1 简介 1
1.2 冯·诺依曼计算机架构 2
1.3 克雷 4
1.4 连接机 5
1.5 Cell处理器 6
1.6 多点计算 8
1.7 早期的GPGPU编程 10
1.8 单核解决方案的消亡 11
1.9 英伟达和CUDA 12
1.10 GPU硬件 13
1.11 CUDA的替代选择 15
1.11.1 OpenCL 15
1.11.2 DirectCompute 16
1.11.3 CPU的替代选择 16
1.11.4 编译指令和库 17
1.12 本章小结 18
第2章 使用GPU理解并行计算 19
2.1 简介 19
2.2 传统的串行代码 19
2.3 串行/并行问题 21
2.4 并发性 22
2.5 并行处理的类型 25
2.5.1 基于任务的并行处理 25
2.5.2 基于数据的并行处理 27
2.6 弗林分类法 29
2.7 常用的并行模式 30
2.7.1 基于循环的模式 30
2.7.2 派生/汇集模式 31
2.7.3 分条/分块 33
2.7.4 分而治之 34
2.8 本章小结 34
第3章 CUDA硬件概述 35
3.1 PC架构 35
3.2 GPU硬件结构 39
3.3 CPU与GPU 41
3.4 GPU计算能力 42
3.4.1 计算能力1.0 42
3.4.2 计算能力1.1 43
3.4.3 计算能力1.2 44
3.4.4 计算能力1.3 44
3.4.5 计算能力2.0 44
3.4.6 计算能力2.1 46
第4章 CUDA环境搭建 48
4.1 简介 48
4.2 在Windows下安装软件开发工具包 48
4.3 Visual Studio 49
4.3.1 工程 49
4.3.2 64位用户 49
4.3.3 创建工程 51
4.4 Linux 52
4.5 Mac 55
4.6 安装调试器 56
4.7 编译模型 58
4.8 错误处理 59
4.9 本章小结 60
第5章 线程网格、线程块以及线程 61
5.1 简介 61
5.2 线程 61
5.2.1 问题分解 62
5.2.2 CPU与GPU的不同 63
5.2.3 任务执行模式 64
5.2.4 GPU线程 64
5.2.5 硬件初窥 66
5.2.6 CUDA内核 69
5.3 线程块 70
5.4 线程网格 74
5.4.1 跨幅与偏移 76
5.4.2 X与Y方向的线程索引 77
5.5 线程束 83
5.5.1 分支 83
5.5.2 GPU的利用率 85
5.6 线程块的调度 88
5.7 一个实例——统计直方图 89
5.8 本章小结 96
第6章 CUDA内存处理 99
6.1 简介 99
6.2 高速缓存 100
6.3 寄存器的用法 103
6.4 共享内存 112
6.4.1 使用共享内存排序 113
6.4.2 基数排序 117
6.4.3 合并列表 123
6.4.4 并行合并 128
6.4.5 并行归约 131
6.4.6 混合算法 134
6.4.7 不同GPU上的共享内存 138
6.4.8 共享内存小结 139
6.5 常量内存 140
6.5.1 常量内存高速缓存 140
6.5.2 常量内存广播机制 142
6.5.3 运行时进行常量内存更新 152
6.6 全局内存 157
6.6.1 记分牌 165
6.6.2 全局内存排序 165
6.6.3 样本排序 168
6.7 纹理内存 188
6.7.1 纹理缓存 188
6.7.2 基于硬件的内存获取操作 189
6.7.3 使用纹理的限制 190
6.8 本章小结 190
第7章 CUDA实践之道 191
7.1 简介 191
7.2 串行编码与并行编码 191
7.2.1 CPU与GPU的设计目标 191
7.2.2 CPU与GPU上的最佳算法对比 194
7.3 数据集处理 197
7.4 性能分析 206
7.5 一个使用AES的示例 218
7.5.1 算法 219
7.5.2 AES的串行实现 223
7.5.3 初始内核函数 224
7.5.4 内核函数性能 229
7.5.5 传输性能 233
7.5.6 单个执行流版本 234
7.5.7 如何与CPU比较 235
7.5.8 考虑在其他GPU上运行 244
7.5.9 使用多个流 248
7.5.10 AES总结 249
7.6 本章小结 249
第8章 多CPU和多GPU解决方案 252
8.1 简介 252
8.2 局部性 252
8.3 多CPU系统 252
8.4 多GPU系统 253
8.5 多GPU算法 254
8.6 按需选用GPU 255
8.7 单节点系统 258
8.8 流 259
8.9 多节点系统 273
8.10 本章小结 284
第9章 应用程序性能优化 286
9.1 策略1:并行/串行在GPU/CPU上的问题分解 286
9.1.1 分析问题 286
9.1.2 时间 286
9.1.3 问题分解 288
9.1.4 依赖性 289
9.1.5 数据集大小 292
9.1.6 分辨率 293
9.1.7 识别瓶颈 294
9.1.8 CPU和GPU的任务分组 297
9.1.9 本节小结 299
9.2 策略2:内存因素 299
9.2.1 内存带宽 299
9.2.2 限制的来源 300
9.2.3 内存组织 302
9.2.4 内存访问以计算比率 303
9.2.5 循环融合和内核融合 308
9.2.6 共享内存和高速缓存的使用 309
9.2.7 本节小结 311
9.3 策略3:传输 311
9.3.1 锁页内存 311
9.3.2 零复制内存 315
9.3.3 带宽限制 322
9.3.4 GPU计时 327
9.3.5 重叠GPU传输 330
9.3.6 本节小结 334
9.4 策略4:线程使用、计算和分支 335
9.4.1 线程内存模式 335
9.4.2 非活动线程 337
9.4.3 算术运算密度 338
9.4.4 一些常见的编译器优化 342
9.4.5 分支 347
9.4.6 理解底层汇编代码 351
9.4.7 寄存器的使用 355
9.4.8 本节小结 357
9.5 策略5:算法 357
9.5.1 排序 358
9.5.2 归约 363
9.5.3 本节小结 384
9.6 策略6:资源竞争 384
9.6.1 识别瓶颈 384
9.6.2 解析瓶颈 396
9.6.3 本节小结 403
9.7 策略7:自调优应用程序 403
9.7.1 识别硬件 404
9.7.2 设备的利用 405
9.7.3 性能采样 407
9.7.4 本节小结 407
9.8 本章小结 408
第10章 函数库和SDK 410
10.1 简介 410
10.2 函数库 410
10.2.1 函数库通用规范 411
10.2.2 NPP 411
10.2.3 Thrust 419
10.2.4 CuRAND 434
10.2.5 CuBLAS库 438
10.3 CUDA运算SDK 442
10.3.1 设备查询 443
10.3.2 带宽测试 445
10.3.3 SimpleP2P 446
10.3.4 asyncAPI和cudaOpenMP 448
10.3.5 对齐类型 455
10.4 基于指令的编程 457
10.5 编写自己的内核 464
10.6 本章小结 466
第11章 规划GPU硬件系统 467
11.1 简介 467
11.2 CPU处理器 469
11.3 GPU设备 470
11.3.1 大容量内存的支持 471
11.3.2 ECC内存的支持 471
11.3.3 Tesla计算集群驱动程序 471
11.3.4 更高双精度数学运算 472
11.3.5 大内存总线带宽 472
11.3.6 系统管理中断 472
11.3.7 状态指示灯 472
11.4 PCI-E总线 472
11.5 GeForce板卡 473
11.6 CPU内存 474
11.7 风冷 475
11.8 液冷 477
11.9 机箱与主板 479
11.10 大容量存储 481
11.10.1 主板上的输入/输出接口 481
11.10.2 专用RAID控制器 481
11.10.3 HDSL 483
11.10.4 大容量存储需求 483
11.10.5 联网 483
11.11 电源选择 484
11.12 操作系统 487
11.12.1 Windows 487
11.12.2 Linux 488
11.13 本章小结 488
第12章 常见问题、原因及解决方案 489
12.1 简介 489
12.2 CUDA指令错误 489
12.2.1 CUDA错误处理 489
12.2.2 内核启动和边界检查 490
12.2.3 无效的设备操作 491
12.2.4 volatile限定符 492
12.2.5 计算能力依赖函数 494
12.2.6 设备函数、全局函数和主机函数 495
12.2.7 内核中的流 496
12.3 并行编程问题 497
12.3.1 竞争冒险 497
12.3.2 同步 498
12.3.3 原子操作 502
12.4 算法问题 504
12.4.1 对比测试 504
12.4.2 内存泄漏 506
12.4.3 耗时的内核程序 506
12.5 查找并避免错误 507
12.5.1 你的GPU程序有多少错误 507
12.5.2 分而治之 508
12.5.3 断言和防御型编程 509
12.5.4 调试级别和打印 511
12.5.5 版本控制 514
12.6 为未来的GPU进行开发 515
12.6.1 开普勒架构 515
12.6.2 思考 518
12.7 后续学习资源 519
12.7.1 介绍 519
12.7.2 在线课程 519
12.7.3 教学课程 520
12.7.4 书籍 521
12.7.5 英伟达CUDA资格认证 521
12.8 本章小结 522

序言
前言
过去的五年中,计算领域目睹了英伟达(NVIDIA)公司带来的变革。随后的几年,英伟达公司异军突起,逐渐成长为最知名的游戏硬件制造商之一。计算统一设备架构(Compute Unified Device Architecture,CUDA)编程语言的引入,第一次使这些非常强大的图形协处理器为C程序员日常所用,以应对日益复杂的计算工作。从嵌入式设备行业到家庭用户,再到超级计算机,所有的一切都因此而改变。
计算机软件界最大的变迁是从串行编程转向并行编程。其中,CUDA起到了重要的作用。究其本质,图形处理单元(Graphics Processor Unit,GPU)是为高速图形处理而设计的,它具有天然的并行性。CUDA采用一种简单的数据并行模型,再结合编程模型,从而无须操纵复杂的图形基元。
实际上,CUDA与之前的架构不同。它不要求程序员对图形或者图形基元有所了解,也不用程序员有任何这方面的知识。你也不一定要成为游戏开发人员。CUDA语言使得GPU看起来与别的可编程设备一样。
本书并不假定读者有CUDA或者并行编程的任何经验,仅假定读者有一定的C/C++语言编程知识。随着本书的不断深入,读者将越来越胜任CUDA的编程工作。本书包含更高级的主题,帮助你从不知晓并行编程的程序员成长为能够全方位发掘CUDA潜力的专家。
对已经熟悉并行编程概念和CUDA的程序员来说,本书包含丰富的学习资料。专设章节详细讨论GPU的架构,包括最新的费米(Fermi)和开普勒(Kepler)硬件,以及如何将它们的效能发挥到极致。任何可以编写C或C++程序的程序员都可以在经过几个小时的简单训练后编写CUDA程序。通过对本书的完整学习,你将从仅能得到数倍程序加速的CUDA编程新手成长为能得到数十倍程序加速的高手。
本书特别针对CUDA学习者而写。在保证程序正确性的前提下,侧重于程序性能的调优。本书将大大扩展你的技能水平和对编写高性能代码的认识,特别是GPU方面。
本书是实践者在实际应用程序中使用CUDA编程的实用指南。同时我们将提供所需的理论知识和背景介绍。因此,任何人(不管有无基础)都可以使用本书,从中学习如何进行CUDA编程。综上,本书是专业人士和GPU或并行编程学习者的理想之选。
本书编排如下:
第1章 从宏观上介绍流处理器(streaming processor)的演变历史,涉及几个重要的发展历程,正是它们把我们带入今天的GPU处理世界。
第2章 介绍并行编程的概念。例如,串行与并行程序的区别,以及如何采用不同的策略寻找求解问题之道。本章意在为既有串行程序员建立一个基本的认识,这里的概念将在后面进一步展开。
第3章 详尽地讲解CUDA设备及与其紧密相关的硬件和架构。为了编写最优性能的CUDA程序,适当了解设备硬件的相关知识是必要的。
第4章 介绍了如何在Windows、Mac和Linux等不同操作系统上安装和配置CUDA软件开发工具包,另外介绍可用于CUDA的主要调试环境。
第5章 介绍CUDA线程模型,并通过一些示例来说明线程模型是如何影响程序性能的。
第6章 我们需要了解不同的内存类型,它们在CUDA中的使用方式是影响性能的最大因素。本章借助实例详细讲解了不同类型内存的工作机制,并指出实践中容易出现的误区。
第7章 主要详述了如何在若干任务中恰当地协同CPU和GPU,并讨论了几个有关CPU/GPU编程的议题。
第8章 介绍如何在应用程序中编写和使用多GPU。
第9章 对CUDA编程中限制性能的主要因素予以详解,考察可以用来分析CUDA代码的工具和技术。
第10章 介绍了CUDA软件开发工具包的示例和CUDA提供的库文件,并介绍如何在应用程序中使用它们。
第11章 关注构建自己的GPU服务器或者GPU集群时的几个相关议题。
第12章 检视多数程序员在开发CUDA应用程序时易犯的错误类型,并对如何检测和避免这些错误给出了建议。

文摘
第1章
超级计算简史
1.1?简介
为什么我们会在一本关于CUDA的书籍中谈论超级计算机呢?超级计算机通常走在技术发展的最前沿。我们在这里看到的技术,在未来的5~10年内,将是桌面计算机中很普通的技术。2010年,在德国汉堡举行的一年一度的国际超级计算机大会上宣布,根据500强名单(http://www.top500.org),英伟达基于GPU的机器在世界最强大的计算机列表中位列第二。从理论上讲,它的峰值性能比强大的IBM Roadrunner和当时的第一名Cray Jaguar的性能还要高。当时Cray Jaguar的性能峰值接近3千万亿次。2011年,采用CUDA技术的英伟达GPU仍然是世界上最快的超级计算机。这时大家突然清楚地认识到,与简陋的桌面PC一起,GPU已经在高性能计算领域达到了很高的地位。
超级计算是我们在现代处理器中看到的许多技术的发展动力。由于对用更快的处理器来处理更大数据集的需求,工业界不断生产出更快的计算机。正是在这些发展变化中,GPU的CUDA技术走到了今天。
超级计算机和桌面计算正在向着异构计算发展——人们试图通过将中央处理器(Central Processor Unit,CPU)和图形处理器(Graphics Processor Unit,GPU)技术混合在一起来实现更高的性能。使用GPU的两个最大的国际项目是BOINC和Folding @ Home,它们都是分布式计算的项目。这两个项目使得普通人也能为具体的科学项目做出真正的贡献。在项目中,采用GPU加速器的CPU/GPU主机的贡献远远超过了仅装备CPU主机的贡献。截至2011年11月,大约550万台主机提供了约5.3千万亿次的计算性能,这将近是2011年世界上最快的超级计算机(日本富士通的“京(K)计算机”)计算性能的一半。
作为美国最快的超级计算机Jaguar的升级换代产品,命名为Titan的超级计算机计划于2013年问世。它将用近30万个CPU核和高达18?000个GPU板卡达到每秒10~20千万亿次的性能。正是由于有像Titan这样的来自世界各地的大力支持,无论是在HPC(高性能计算)行业,还是在桌面电脑领域,GPU编程已经成为主流。
现在,你可以自己“攒”或者购买一台具有数万亿次运算性能的桌面超级计算机了。在21世纪初期,这将会使你跻身500强的首位,击败拥有9632奔腾处理器的IBM ASCI Red。这不仅部分地展现了过去十几年计算机技术取得的巨大进步,更向我们提出了从现在开始的未来十几年,计算机技术将发展到何种水平这个问题。你可以完全相信在未来一段时间内,GPU将位于技术发展的前沿。因此,掌握GPU编程将是任何一个优秀开发人员必备的重要技能。

内容简介
本书是CUDA并行程序设计领域最全面、最详实和最具权威性的著作之一,由CUDA开发者社区技术总监亲自撰写,英伟达中国首批CUDA官方认证工程师翻译,详实地讲解了CUDA并行程序设计的技术知识点(平台、架构、硬件知识、开发工具和热点技术)和编程方法,包含大量实用代码示例,实践性非常强。
全书共分为12章。第1章从宏观上介绍流处理器演变历史。第2章详解GPU并行机制,深入理解串行与并行程序,以辩证地求解问题。第3章讲解CUDA设备及相关的硬件和体系结构,以实现最优CUDA程序性能。第4章介绍CUDA开发环境搭建和可用调试环境。第5章介绍与CUDA编程紧密相关的核心概念——网格、线程块与线程,并通过示例说明线程模型与性能的关系。第6章借助实例详细讲解了不同类型内存的工作机制,并指出实践中容易出现的误区。第7章细述多任务的CPU和GPU协同,并介绍多个CPU/GPU编程秘技。第8章介绍如何在应用程序中编写和使用多GPU。第9章详述CUDA编程性能限制因素、分析CUDA代码的工具和技术。第10章介绍编程实践中的库与软件开发工具包。第11章讲解如何设计基于GPU的系统。第12章总结CUDA应用中易犯错误以及应对建议。

购买书籍

当当网购书 京东购书 卓越购书

PDF电子书下载地址

相关书籍

搜索更多