抽象代数讲义.pdf

抽象代数讲义.pdf
 

书籍描述

编辑推荐
《抽象代数讲义》是一套久负盛名的三卷集教材,是作者雅格布斯根据他在霍普金斯大学和耶鲁大学讲课时的讲义编写而成的,后又成为作者《基本代数学》一书的蓝本。第1卷介绍了群、环、域、同构等抽象代数的重要的基本概念和抽象代数的基本性质。《抽象代数讲义(第2卷》主要涉及线性代数理论,着重论述了向量空间理论。

作者简介
作者:(德国)雅格布斯(Jacobson N.)

目录
CHAPTER I: FINITE DIMENSIONAL VECTOR SPACES
1. Abstract vector spaces
2. Right vector spaces
3. O—modules'
4. Linear dependence
5. Invariance of dimensionality
6. Bases and matrices '
7. Applications to matrix theory
8. Rank of a set of vectors
9. Factor spaces
10. Algebra of subspaces
11. Independent subspaces, direct sums
CHAPTER IIi LINEAR TRANSFORMATIONS
I. Definition and examples
2. Compositions of linear transformations
3. The matrix of a linear transformation
4. Compositions of matrices
5. Change of basis. Equivalence and similarity of matrices
6. Rank space and null space of a linear transformation
7. Systems of linear equations
8. Linear transformations in right vector spaces
9. Linear functions
I0. Duality between a finite dimensional space and its conjugate space
11. Transpose of a linear transformation
12. Matrices of the transpose
13. Projections
CHAPTER III: THE THEORY OF A SINGLE LINEAR TRANSFORMATION
1. The minimum polynomial of a linear transformation
2. Cyclic subspaccs
3. Existence of a vector whose order is the minimum polynomial
4. Cyclic linear transformations
5. The —module determined by a linear transformation
6. Finitely generated 0—modules, o, a principal ideal domain
7. Normalization of the generators of and of
8. Equivalence of matrices with elements in a principal ideal domain
9. Structure of finitely generated o—modules
10. Invarjance theorems
11. Decomposition of a vector space relative to a linear transformation
12. The characteristic and minimum polynomials
13. Direct proof of Theorem 13
14. Formal properties of the trace and the characteristic polynomial
15. The ring of 0—endomorphisms of a cyclic o—m6dule
16. Determination of the ring of o—endomorphisms of a finitelygenerated 0—module 0 principal
17. The linear transformations which commute with a given linear transformation
18. The center of the ring
CHAPTER IV: SETS OF LINEAR TRANSFORMATIONS
1. Invariant subspaces
2. Induced linear transformations
3. Composition series
4. Decomposability
5. Complete reducibility
6. Relation to the theory of operator groups and the theory of modules
7. Reducibility, decomposability, complete reducibility for a single linear transformation
8. The primary components of a space relative to a linear transformation
9. Sets of commutative linear transformations
CHAPTER V: BILINEAR FORMS
1. Bilinear forms
2. Matrices of a bilincar form
3. Non—degenerate forms
4. Transpose of a linear transformation relative to a pair of bilinear forms
5. Another relation between linear transformations and bilinear forms
6. Scalar products
7. Hermitian scalar products
8. Matrices of hermitian scalar products
9. Symmetric and hermitian scalar products over special division rings
10. Alternate scalar products
11. Witt's theorem
12. Non—alternate skew—symmetric forms
CHAPTER VII EUCLIDEAN AND UNITARY SPACES
I. Cartesian bases
2. Linear transformations and scalar products
3. Orthogonal complete reducibility
4. Symmetric, skew and orthogonal linear transformations
5. Canonical matrices for symmetric and skew linear transformations
6. Commutative symmetric and skew linear transformations
7. Normal and orthogonal linear transformations
8. Semi—definite transformations
9. Polar factorization of an arbitrary linear transformation
10. Unitary geometry
11. Analytic functions of linear transformations
CHAPTER VII: PRODUCTS OF VECTOR SPACES
1. Product groups of vector spaces
2. Direct products of linear transformations
3. Two—sided vector spaces
4. The Kronecker product
5. Kronecker products of linear transformations and of matrices
6. Tensor spaces
7. Symmetry classes of tensors
8. Extension of the field of a vector space
9. A theorem on similarity of sets of matrices
10. Alternative definition of an algebra. Kronecker product ofalgebras
CHAPTER VIII: THE RING OF LINEAR TRANSFORMATIONS
I. Simplicity of
2. Operator methods
3. The left ideals of
4. Right ideals
5. Isomorphisms of rings of linear transformations
CHAPTER IX: INFINITE DIMENSIONAL VECTOR SPACES
1.Existence of a basis
2. Invariance of dimensi0nality
3. Subspaces
4. Linear transformations and matrices
5. Dimensionality of the conjugate space
6. Finite topology for linear transformations
7. Total subspaces of
8. Dual spaces. Kronecker products
9. Two—sided ideals in the ring of linear transformations
10. Dense rings of linear transformations
11. Isomorphism theorems
12. Anti—automorphisms and scalar products
13. Schur's lemma. A general density theorem
14. Irreducible algebras of linear transformations
Index

文摘
版权页:

抽象代数讲义

插图:

抽象代数讲义

内容简介
《抽象代数讲义(第2卷)(英文)》是一套久负盛名的三卷集教材,是作者根据他在霍普金斯大学和耶鲁大学讲课时的讲义编写而成的,后又成为作者这一书的蓝本。第1卷介绍了群、环、域、同构等抽象代数的重要的基本概念和抽象代数的基本性质。第2卷主要涉及线性代数理论,着重论述了向量空间理论。第3卷介绍域理论和伽罗瓦理论,讨论了域的代数结构和域的赋值理论。

购买书籍

当当网购书 京东购书 卓越购书

PDF电子书下载地址

相关书籍

搜索更多