代数.pdf

代数.pdf
 

书籍描述

编辑推荐
《代数(英文版)(第2版)》为华章数学原版精品系列之一。

作者简介
作者:(美国)阿廷 (Michael Artin)

阿廷(Michael Artin),当代领袖型代数学家与代数几何学家之一。美国麻省理工学院数学系荣誉退休教授。1990年至1992年。曾担任美国数学学会主席。由于他在交换代数与非交换代数、环论以及现代代数几何学等方面做出的贡献,2002年获得美国数学学会颁发的Leroy P.Steele终身成就奖。Artin的主要贡献包括他的逼近定理、在解决沙法列维奇-泰特猜测中的工作以及为推广“概形”而创建的“代数空间”概念。

目录
Freface
1 Matrices
1.1 The Basic Operations
1.2 Row Reduction
1.3 The Matrix Tianspose
1.4 Determinants
1.5 Permutations
1.6 Other Formulas for the Determinant
Exercises

2 Groups
2.1 Laws of Composition
2.2 Groups and Subgroups
2.3 Subgroups of the Additive Group of Integers
2.4 Cyclic Groups
2.5 Homomorphisms
2.6 Isomorphisms
2.7 Equivalence Relations and Partitions
2.8 Ccsets
2.9 Modular Arithmetic
2.10 The Correspondence Theorem
2.11 Product Groups
2.12 Quotient GrouFs
Exercises

3 Vector Spaces
3.1 Subspaces of Rn
3.2 Fields
3.3 Vector Spaces
3.4 Bases and Dimension
3.5 Computing with Bases
3.6 Direct Sums
3.7 Infinite-Dimensional Spaces
Exercises

4 Linear Operators
4.1 The Dimension Formula
4.2 The Matrix of a Linear Transformation
4.3 Linear Operators
4.4 Eigenvectors
4.5 The Characteristic Polynomial
4.6 Triangular and Diagonal Fcrms
4.7 Jordan Form
Exercises

5 Applications of Linear Operators
5.1 Orthogonal Matrices and Rotations
5.2 Using Continuity
5.3 Systems of Differential Equations
5.4 The Matrix Exponential
Exercises

6 Symmetry
6.1 Symmetry of Plane Figures
6.2 Isometries
6.3 Isometries of the Plane
6.4 Finite Groups of Orthogonal Operators on the Plane
6.5 Discrete Groups of Isometries
6.6 Plane Crystallographic Gloups
6.7 Abstract Symmetry: Group Operations
6.8 The Operation on Cosets
6.9 The Counting Formula
6.10 Operations on Subsets
6.11 Permutation Representations
6.12 Finite Subgroups cf the Rotation Group
Exercises

7 More Group Theory
7.1 Cayley's Theorem
7.2 The Class Equation
7.3 p-Groups
7A The Class Equation of the Icosahedral Group
7.5 Conjugation in the Symmetric Group
7.6 Normalizers
7.7 The Sylow Theorems
7.8 Groups of Order 12
7.9 The Free Group
7.10 Generators and Relations
7.11 The Todd-Coxeter Algorithm
Exercises

8 Bilinear Forms
8.1 Bilinear Forms
8.2 Symmetric Forms
……
9 Linear Groups
10 Group Representations
11 Rings
12 Factoring
13 Quadratic Number Fields
14 Linear Algebra in a Ring
15 Fields
16 Galois Theory
APPENDIX
Bibliography Notation
Index

文摘
版权页:

代数

插图:

代数

代数

内容简介
《代数(英文版)(第2版)》由著名代数学家与代数几何学家MichaelArtin所著,是作者在代数领域数十年的智慧和经验的结晶。书中既介绍了矩阵运算、群、向量空间、线性算子、对称等较为基本的内容,又介绍了环、模型、域、伽罗瓦理论等较为高深的内容。《代数(英文版)(第2版)》对于提高数学理解能力,增强对代数的兴趣是非常有益处的。此外,《代数(英文版)(第2版)》的可阅读性强,书中的习题也很有针对性,能让读者很快地掌握分析和思考的方法?作者结合这20年来的教学经历及读者的反馈,对本版进行了全面更新,更强调对称性、线性群、二次数域和格等具体主题。本版的具体更新情况如下:新增球面、乘积环和因式分解的计算方法等内容,并补充给出一些结论的证明,如交错群是简单的、柯西定理、分裂定理等。修订了对对应定理、SU2表示、正交关系等内容的讨论,并把线性变换和因子分解都拆分为两章来介绍。新增大量习题,并用星号标注出具有挑战性的习题。《代数(英文版)(第2版)》在麻省理工学院、普林斯顿大学、哥伦比亚大学等著名学府得到了广泛采用,是代数学的经典教材之一。

购买书籍

当当网购书 京东购书 卓越购书

PDF电子书下载地址

相关书籍

搜索更多