现代几何学:方法与应用:曲面几何、变换群与场.pdf

现代几何学:方法与应用:曲面几何、变换群与场.pdf
 

书籍描述

编辑推荐
《现代几何学:方法与应用(第1卷几何曲面变换群与场第5版)》可用作数学和理论物理专业高年级和研究生的教学用书,对从事几何和拓扑研究的工作者也极有参考价值。

作者简介
作者:(俄)Б.А.杜布洛文 С.П.诺维可夫 А.Т.福明柯

目录
《俄罗斯数学教材选译》序
第2版前言
第1版前言
第一章 空间区域中的几何.基本概念
§1.坐标系
§2.欧氏空间
§3.黎曼和伪黎曼空间
§4.欧氏空间的最简单的变换群
甄弗莱纳公式
§6.伪欧几里得空间
第二章 曲面论
§7.空间曲面的几何
§8.第二基本型
§9.球面的度量
§10.在伪欧氏空间中的类空曲面
§11.几何中的复语言
§12.解析函数
§13. 曲面度量的共形形式
§14.作为Ⅳ维空间中的曲面变换群
§15.高维欧氏空间和伪欧氏空间的共形变换
第三章 张量.代数理论
§16.张量的例子
§17.张量的一般定义
§18.(O,k)型张量
§19.黎曼和伪黎曼空间中的张量
§20.晶体群和平面与空间旋转群的有限子群.不变张量的例子
§21.伪欧氏空间的二阶张量和它们的特征值
§22.在映射下张量的行为
§23.向量场
§24.李代数
第四章 张量的微分学
§25.反称张量的微分
§26.反称张量和积分理论
§27.复空间中的微分形式
§28.共变微分
§29.共变微分和度量
§30.曲率张量
第五章 变分法原理
§31.一维变分问题
§32.守恒定律
§33.哈密顿体系
§34.相空间的几何理论
§35.曲面的拉格朗日函数
§36.测地方程的二阶变分
第六章 高维变分问题.场及几何不变量
§37.最简单的高维变分问题
§38.拉格朗日的例子
§39.广义相对论的最简单概念
§40.群SO(3)和O(3,1)的旋量表示.狄拉克方程和它的性质
§41.具有任意对称性的场的共变微分
§42.度规不变的泛函的例子.麦克斯韦和杨一米尔斯方程.具恒等于零的变分导数的泛函(示性类)
参考文献
索引

内容简介
《现代几何学:方法与应用(第1卷几何曲面变换群与场第5版)》是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的好书。内容包括张量分析、曲线和曲面几何、一维和高维变分法(第一卷),微分流形的拓扑和几何(第二卷),以及同调与上同调理论(第三卷)。

购买书籍

当当网购书 京东购书 卓越购书

PDF电子书下载地址

相关书籍

搜索更多