外语教学研究中的定量数据分析.pdf

外语教学研究中的定量数据分析.pdf
 

书籍描述

编辑推荐
除阐述了定量数据分析所必要的理论知识之外,《外语教学研究中的定量数据分析》最大的特点是可操作性和实用性强,非常适合于外语教师、研究工作者和博士、硕士研究生阅读。该书对外语定量研究设计和数据分析有较强的指导意义,亦对其它社会科学定量数据分析有重要的参考价值。

媒体推荐
总序
我们华中理工大学创办文科已经20年了,回顾20年的历史,可以得出两点结论:
一是理工科大学可以办好文科。20年来,我们从无到有,引进和培养了一批教师,建立了多种学科、专业,开展了多项学术研究。现在,已经拥有2个博士点,14个硕士点,11个本科专业,其中部分学科建设已经走在国内前列。我们培养了一批教授,其中有几位在国内学术界已经产生了较大影响。我们培养了大批学生,他们在全国各地努力工作,不断受到好评。
二是在理工科大学办文科十分艰难,需要付出极大的努力。难,主要难在要克服传统的习惯,改变传统的工作方式,创建适合文科发展的氛围。以工科为主的学校,从上到下,对文科的重要性往往认识不足,因而不容易引起足够的重视。一套工作方式都是适合工科的,往往用对工科的要求来规范文科。可喜的是,经过20年艰苦努力,这些方面都已经有了根本性的转变。
面向未来,我们应对文科的发展充满信心。把文科建设提高到一个新水平,首先要从战略的高度来进一步规划文科的发展。要本着“均衡发展,重点突破”的方针,在现有格局的基础上,确定三至四个学科作为重点,集中人力、财力,使这些学科获得优先发展。同时,其它学科也应制定切实可行的学科建设规划,努力办出特色。 把文科建设提高到一个新水平,引进、培养、壮大教师队伍,提高教师水平则是关键。办文科主要靠人,靠高水平的教师。要采取超常规措施,通过多种方式,把国内知名学者吸引到我校,从事教学和研究。
把文科建设提高到一个新水平,还要大力开展学术研究。首先要加强基础理论研究,推动文、史、哲等基础学科的建设。基础学科的加强,是其它学科发展的重要前提。同时,要面向社会,大力开展应用研究,组织起来,承担重大课题,从而通过我们的研究,为政府和社会有关方面决策提供依据,推动社会进步和发展。要端正学风,切忌急功近利,要有十年磨一剑的精神,通过长期的努力,出高水平的研究成果。
为了提高学术水平,推进文科建设,在出版社的大力支持下,1995年开始,出版了“华中理工大学文学院学术丛书”,多部学术水平较高的专著得以问世。现在,由于院、系调整,文科院(系)目前包括人文学院、经济学院、新闻与传播学院、社会学系、外语系、高教所等,因此学校决定出版“华中理工大学文科学术丛书”。这是加强整个文科建设的一个有力举措。
现在,丛书中的几本专著即将面世,这是一个良好的开端。今后,一定会有更多更好的文科学术专著源源不断地出版,并将有力地推动文科建设上一个新的台阶。
1999年5月31日

作者简介
秦晓晴,湖北浠水人,1961年出生,南京大学外国语学院应用语言学博士、博士后,现为华中科技大学外语系教授、硕士生导师、外语教育研究所副所长和中国英语研究会理事。1996年以来先后赴香港、美国和英国多所大学进行研究和访问。自1995年以来先后四次获得华中理工大学和南京大学教学和科研奖励,还获得过2001年度宝钢教育基金优秀教师奖。目前已经参与完成了一项国家“九三”社会科学基金科研课题,并负责教育部人文社会科学基金科研课题,并负责教育队人文社会科学研究“十五”规划项目、全国教育考试“十五”科研规划重点课题和国家留学基金委回国人员科研启动基金项目各一顶。近年来先后在《外语教学与研究》、《现代外语》、《外语教学与研究》等期刊上发表学术论文20余篇,主编及参编著作四部。

目录
第1章 外语教学研究及其特点
第2章 外语教学研究中的统计分析基础
2.1 统计分析中的基本概念
2.2 统计检验方法选择
第3章 数据准备工作
3.1 定量数据的收集
3.2 数据的SPSS录入
3.3 数据的整理
第4章 项目分析
4.1 问卷量表的总分求和
4.2 问卷量表总分高低排序
4.3 确定高分组和低分组
4.4 独立样本t检验
第5章 效度和结构效度分析
5.1 测量工具的效度
5.2 效度的种类
5.3 结构效度分析——因子分析
第6章 信度及信度分析
6.1 外在信度检验方法
6.2 内在信度检验方法
6.3 用SPSS检验内在一致性——Cronbach a系数
第7章 描述统计量
7.1 描述统计量及数据表达
7.2 描述统计量的SPSS计算
7.3 标准分和T分数计算
第8章 数据的初步考察及假设检验
8.1 正态分布假设检验
8.2 方差齐性检验
8.3 独立性检验和线性检验
第9章 参数统计检验——t检验
9.1 独立样本t检验
9.2 配对样本t检验
9.3 甲样本t检验
第10章 参数统计检验——方差分析(1)
10.1 方差分析的基本原理
10.2 单因素方差分析
10.3 用Means过程进行方差分析
10.1 用GLM进行单因素方差分析
10.5 双因素方差分析
第11章 参数统计检验——方差分析(2)
11.1 协方差分析
11.2 重复测量方差分析
第12章 相关分析
12.1 相关分析概念
12.2 相关分析原理
12.3 双变量相关分析SPSS示例
12.4 偏相关分析SPSS示例
……

文摘
书摘
第5章 效度和结构效度分析
5.1 测量工具的效度
效度是指测量工具对测量对象的测量能力,也就是说,测量工具可以在多大程度上测量所要测量的东西。在社会科学研究中,通常使用两种方法确立测量工具的效度:逻辑证据和统计证据。用逻辑证据来确立效度就是证明测量工具中的问题与研究目的是否合适,而用统计证据来确立效度则是通过一定的计算提供硬证据来证明问题与研究目的的关系。
在问题与研究目的之间建立逻辑联系既易又难。容易的是,研究者自己就可以判断它们之间的联系。难的是这种判断必须有更多的支持,如别的研究者和统计数据,即是说,这种联系不是凭空而来。如果需要测量的东西比较具体,或比较直观(如年龄或收入等),在测量问题和研究目的之间建立联系并不难。但是如果测量的是个人态度或教学方法的有效性,要确立测量工具的效度难度就大一些。对于比较抽象的概念或者是不易直接观察的事物,测量工具中就需要更多的问题,才可以覆盖它们的不同方面,才可以证实所问的问题测量的就是此概念或事物。
5.2效度的种类
效度可以分为内在效度(internaI validity)和外在效度(external validity)。内在效度是指存在于测量工具本身的效度,它包括内容效度(content validity)和结构效度(construct validity)。外在效度是指利用测量工具以外的标准,即外在标准验证而得以证实的效度,它包括预示效度(predictive’validity)和共时效度(concurrent validity)。预示效度的判断是根据测量工具能在多大程度上预示结果,而共时效度的判断则是根据一种测量工具与另外测量工具同时使用时进行的比较。
内容效度涉及量表项目或问题的关联性以及量表的覆盖范围。
上面讲过,判断测量工具是否测量了想要测量的东西,主要依据是问题与研究目的之间的逻辑联系。量表的每个项目和问题必须与研究目的之间有逻辑联系,这种联系的建立有人称之为表面效度(face validity)。项目和问题必须涵盖需要测量的事物或态度的整个范围,从这点来评判测量工具的项目就是内容效度(Kurear,1999)。此外,对测量的事物或态度的覆盖必须平衡,也就是每一个方面必须用类似的、足够的问题或项目来呈现出来。一个研究者判断内容效度必须像其他研究者所判断的一样,也依据项目或问题在多大程度上表现了要测量的东西。内容效度的保证就是项目和问题与研究目的之间的联系分析,以及它们对所测量对象的覆盖分析,即设法获得逻辑证据,这方面没有什么验证公式或统计程序可供使用。
结构效度不是指测量工具的结构,而是指它以之为基础的理论结构。结构效度的确立依赖于统计方法,它是由每一结构对观测现象的整个方差的贡献来决定的。比如,前面几章讲到了研究不同受试者的焦虑感程度,可以把语言运用焦虑、课堂焦虑和评价焦虑看作是焦虑感的三个最重要的因素或结构。我们可以通过统计程序来确定这三个因素(结构)对于整个焦虑感方差的贡献。这些因素对整个方差的贡献就表明了焦虑感问卷效度的程度。这些结构解释的方差越大,说明问卷的效度就越高。相关分析、因子分析方法和多维量表方法(multidimensional scaling)等统计方法常被用来检验结构效度。
5.3 结构效度分析——因子分析
在社会科学领域中,人们常用因子分析来进行结构效度分析。因子分析通过研究众多原始变量(往往是问卷中的问题)之间的内部依赖关系,探讨观测数据中的基本结构,将彼此相关的原始变量转化成少数有概念意义、彼此独立性大、能反映众多原始变量所代表的主要信息的基础变量,即因子(factor)。因子分析就是研究在丢失信息最少的情况下,如何把众多的原始变量浓缩为少数几个因子。
在多元统计分析中,往往原始变量的数量较多,而且它们之间存在着较强的相关关系。如果进行多元回归分析,而自变量之间高度相关,就会出现多重共线性现象,也就是说,这些变量之间的高度相关说明它们所反映的信息高度重合。这就会给研究者使用多元回归等统计方法带来困难,而且也难以对原始变量进行分析和描述。但是,如果通过因子分析就可以找到较少的几个因子,这些因子代表了数据的基本结构,反映了信息的本质特征,就可以较好地对其加以分析和描述。
因子分析的另一个特点是进行数据简化。通过因子分析把一组变量化为少数几个因子后,可进一步将原始变量的信息转换成这些因子的因子值,利用因子值可直接对样本进行分类和综合评价,还可用这些因子值代替原始变量进行其他统计分析,如回归分析、路径分析等等。
因子分析分为探索性因子分析(exploratory factor analysis)和验证性因子分析(confirmatory factor analysis)。如果研究者事先对观测数据背后存在多少个基础变量(即因子)一无所知或知之甚少,因子分析用来探索基础变量的维数,就是探索性因子分析。进行探索性因子分析,最好使用主成分分析法,并通过碎石图确定提取因子的数目。如果研究者根据研究文献或其他的先验知识对因子的数目或因子结构作出了假设,而用因子分析来检验假设,就是验证性因子分析(参见Kumar,1999;郭志刚,1999)。关于将因子分析用于结构效度检验,以下各节要详细讲解具体的作法,读者还可参阅Wintergerst等人(2001)进行的学习风格测量工具的结构效度研究。
5.3.1 因子分析的基本概念和步骤
5.3.1.1 因子分析中的基本概念
(1)因子分析模型
因子分析模型中,假定每个原始变量由两个部分组成:共同因子(common factors)和唯一因子(unique factors)。共同因子是各个原始变量所共有的因子,解释变量之间的相关关系。唯一因子顾名思义是每个原始变量所特有的因子,表示该变量不能被共同因子解释的部分。原始变量与因子分析时抽出的共同因子的相关关系用因子负荷表示(fact:or loadings)。
(2)因子负荷
因子负荷作为因子分析模型中的重要统计量,表明了原始变量和共同因子之间的相关关系。因子负荷的绝对值越大,表明共同因子与变量之间的关系越紧密。一般说来,负荷量为0.3或更大被认为有意义。所以,当要判断一个因子的意义时,需要查看哪些变量的负荷达到了0.3或0.3以上。
(3)共同性和特征值
共同性(communality)就是指每个原始变量在每个共同因子的负荷量的平方和,也就是指原始变量方差中由共同因子所决定的比率。变量的方差由共同因子和唯一因子组成。共同性表明了原始变量方差中能被共同因子解释的部分,共同性越大,变量能被因子说明的程度越高,即因子可解释该变量的方差越多。共同性的意义在于说明如果用共同因子替代原始变量后,原始变量的信息被保留的程度。
……

内容简介
《外语教学研究中的定量数据分析》是一本系统介绍外语教学研究特点、统计分析基础以及参数和非参数检验方法在外语教学研究中应用的专著。该书由以下三大部分十四章组成:1)外语教学研究基础,该部分主要介绍外语教学研究和统计学基本概念;2)定量数据分析的准备,该部分以实例详述了如何利用SPSS统计软件进行数据的准备工作、问卷的项目分析,以及效度和信度分析;3)定量数据的统计分析,该部分用实例讨论了描述统计分析方法、数据考察、假设检验,以及参数和非参数检验方法在外语教学研究中的运用。外语教学研究中的定量数据分析为秦晓晴著。

购买书籍

当当网购书 京东购书 卓越购书

PDF电子书下载地址

相关书籍

搜索更多