计算机科学丛书:模式分类.pdf

计算机科学丛书:模式分类.pdf
 

书籍描述

编辑推荐
《模式分类》(原书第2版)已被卡内基-梅隆、哈佛、斯坦福、剑桥等120多所大学采用为教材。本书作为流行和经典的教材和专业参考书,主要面向电子工程、计算机科学、数学和统计学、媒体处理、模式识别、计算机视觉、人工智能和认知科学等领域的研究生和相关领域的科技人员。开发和研究模式识别系统的实践者,无论其应用涉及语音识别、字符识别、图像处理还是信号分析,常会遇到需要从大量令人迷惑的技术中做出选择的难题。这本独一无二的教材及专业参考书,为你准备了充足的资料和信息,供你选择最适合的技术。作为一本在过去几十年内模式识别领域经典著作的新版,这一版本更新并扩充了原作,重点介绍模式分类及该领域近年来的巨大进展。

媒体推荐
书评
开发和研究模式识别系统的实践者,无论其应用涉及语音识别、字符识别、图像处理还是信号分析,常会遇到需要从大量令人迷惑的技术中做出选择的难题。这本独一无二的教材及专业参考书,为你准备了充足的资料和信息,供你选择最适合的技术。作为一本在过去几十年内模式识别领域经典著作的新版,这一版本更新并扩充了原作,重点介绍模式分类及该领域近年来的巨大进展。本书已被卡内基-梅隆、哈佛、斯坦福、剑桥等120多所大学采用为教材。本书作为流行和经典的教材和专业参考书,主要面向电子工程、计算机科学、数学和统计学、媒体处理、模式识别、计算机视觉、人工智能和认知科学等领域的研究生和相关领域的科技人员。

作者简介
Richard O.Duda于麻省理工学院获得电气工程博士学位,是加州San Jose州立大学电气工程系名誉教授。他是美国人工智能学会会士、IEEE会士。
Peter E.Hart是加州Ricoh lnnovations公司的创始人、总裁和CEO,同时还是理光公司的高级副总裁,在此之前曾任理光加州研究中心的高级副总裁。他是美国人工智能学会会士、IEEE会士,曾获IEEE信息论协50周年论文奖。

目录
出版者的话
专家指导委员会
译者序
前言
第1章 绪论
1.1 机器感知
1.2 一个例子
1.3 模式识别系统
1.4 设计循环
1.5 学习和适应
1.6 本章小结
全书各章概要
文献和历史评述
参考文献
第2章 贝叶斯决策论
2.1 引言
2.2 贝叶斯决策论——连续特征
2.3 最小误差率分类
2.4 分类器、判别函数及判定面
2.5 正态密度
2.6 正态分布的判别函数
2.7 误差概率和误差积分
2.8 正态密度的误差上界
2.9 贝叶斯决策论——离散特征
2.10 丢失特征和噪声特征
2.11 贝叶斯置信网
2.12 复合贝叶斯决策论及上下文
本章小结
文献和历史评述
习题
上机练习
参考文献
第3章 最大似然估计和贝叶斯参数估计
第4章 非参数技术
第5章 线性判别函数
第6章 多层神经网络
第7章 随机方法
第8章 非度量方法
第9章 独立于算法的机器学习
第10章 无监督学习和聚类
附录A 数学基础
参考文献
索引

内容简介
《模式分类》(原书第2版)的第1版《模式分类与场景分析》出版于1973年,是模式识别和场景分析领域奠基性的经曲名著。在第2版中,除了保留了第1版的关于统计模式识别和结构模式识别的主要内容以外,读者将会发现新增了许多近25年来的新理论和新方法,其中包括神经网络、机器学习、数据挖掘、进化计算、不变量理论、隐马尔可夫模型、统计学习理论和支持向量机等。作者还为未来25年的模式识别的发展指明了方向。书中包含许多实例,各种不同方法的对比,丰富的图表,以及大量的课后习题和计算机练习。

购买书籍

当当网购书 京东购书 卓越购书

PDF电子书下载地址

相关书籍

搜索更多