Auroral Dynamics and Space Weather.pdf

Auroral Dynamics and Space Weather.pdf



The aurora is the most visible manifestation of the connection of the Earth to the space environment and has inspired awe, curiosity, and scientific inquiry for centuries.  Recent advances in observing techniques and modeling and theoretical work have revealed new auroral phenomena, provided a better understanding of auroral dynamics, and have led to an enhanced capability for auroral forecasts. This monograph features discussions of:                                       

  • New auroral phenomena due to the ring current ion and polar rain electron precipitation
  • Various auroral forms and hemispheric asymmetry
  • Auroral model development and MHD simulations
  • Application of the auroral observations for radio absorption and scintillation
  • Aurora nowcast and forecast for space weather operations 

Auroral Dynamics and Space Weather is a valuable contribution for scientists, researchers, space weather operators, and students of Earth's space environment.


1. Introduction
Yongliang Zhang and Larry Paxton, Johns Hopkins Univ. APL (JHU/APL) 

2. New auroral phenomena
2.1 Ring Current aurora
Y. Zhang, L.J. Paxton, Johns Hopkins Univ. APL
K. Shiokawa, K. Sakaguchi, R. Nomura, Nagoya Univ.
S.A. Fuselier, Lockheed Martin Advanced Technology Center
T.J. Immel, S. Mende, H.U. Frey, University of California, Berkeley
J.L. Burch, Southwest Research Institute

2.2 Polar rain aurora
Y. Zhang, L.J. Paxton, JHU/APL
Keith Ogilvie, NASA
Jack Scudder, Univ. of Iowa

2.3 Radiation belt aurora
Y. Miyoshi, Nagoya Univ. 

3. Auroral dynamics
3.1 Hemispheric and longitudinal symmetry and asymmetry
Nikorai Ostgaard, University of Bergen
Jesper Gjerloev, Johns Hopkins Univ. APL
Matthew Potter, Severna Park, Maryland, USA
Xiaoyan Zhou, JPL (dayside auroral and conjugacy)
Kan Liou, JHU/APL, (symmetry based on GUVI)
R. Michell, Southwest Research Institute, (longitudinal asymmetry in aurora)
J.P. Reistad, Univ. of Bergen, (hemispheric asymmetry and IMF Bx)

3.2 Substorm and storm
Eric Donovan, U of Calgary
T. Nishmura, UCLA
A.J. Hull, UC Berkeley, (acceleration, FAC, substorm)
O. Saka, Office Geophysik, Ogori Fukuoka, Japan (magnetic impulse)
A. Singh, National Center for Antarctic & Ocean research, Brazil, (substorm electrojet)
Z. Peng, National Space Science Center, Beijing, (substorms under IMF Bz>0)
R. Takeuchi, Nagoya Univ, (storm)

3.3 Pulsating auroras
N. Sato, Naitonal Polar research Institute, Japan (quasi-periodic variation)
E.J. Lund, Univ. New Hampshire, (Long duration)
M.J. Ahms, Univ of Alaska, Fairbanks, (high frequency pulsating aurora)
3.4 Discrete, patchy and diffuse aurora
Richard Thorne, UCLA (diffuse aurora and wave-particle interaction)
G.V. Khazanov NASA, (diffuse electron)
Jody Comnock, UT Dallas (theta arc)
D. Fontaine, LPP -CNRS (polar arcs)
K. Shiokawa, Nagoya Univ., (aurora structure)
D.M. Gillies, U. of Calgary, (arc orientation and IMF)
T.G. Cameron, U of Calgary, (current-voltage relationship and multi arcs)
S. Spanswick, U of Calgary, (auroral patch)
L. Jun, U of Calgary, (ion precipitation boundary

3.5 Cusp aurora
H. Frey, Stephen Mende, Univ. of California, Berkeley
P.E. Sandholt, Univ. of Oslo
Don McEwen, Univ. of Saskatchewan
Y. Zhang, L.J. Paxton, Pat Newell, JHU/APL

3.6 Particles and acceleration
Pat Newell, JHU/APL (2009 JGR, diffuse, monoenergetic and broadband aurora)
Robert Mcintosh, Phllip Anderson, Univ. of Texas, Dallas (particle spectra)
J.P. Dombeck, Univ. of Minnesota, (inverted V statistics)
C.A. Colpitts, Univ. of Minnesota, (discrete, substorm, Alfvenic aurora and particle)
M. Dombrowski, Dartmouth College, (waves and particle, rocket experiment)
M. Khan, B. Emery, Mount Holyoke College, NCAR, (auroral hemispheric power & Joule heating)
T. Bhattacharya, U of Alaska Fairbanks, (parallel electric field and arcs)

3.7 Auroral radio emissions and waves
Y. Goto, Kanazawa Univ, Japan, (AKR)
S.F. Fung, Univ of Maryland, (Terrestrial Myriametric RadioBurst)
M. Broughton, Dartmouth College, (medium frequency if auroral radio)
Y.C. Huang, National Central University, Taiwan, (radio propagation)
A.L. Gautier, Observatoire de Paris, (radio propagation in aurora cavity)
R.B. Cosgrove, SRI international, (Alfven waves propagation in ionosphere)

3.8 Solar wind and ionosphere impact on aurora

A.V. Streltsov, Embry-Riddle Aeronotical Univ., (ionosphere impact on arcs)
Karl Laundal, Univ. of Bergen (Solar wind impact)
Simon Wing, Johns Hopkins Univ. APL (FAC)
Shinichi Ohtani, Johns Hopkins Univ. APL (ionosphere impact)
J.W. Jerloev, JHU/APL, (electroject asymmetry)
Q.H. Zhang, Shandong Univ at Weihai, China, (Polar patch and plasma convection)
N. Imtiaz, U of Alberta, (auroral E-region Rocket measurements)
M. He, Jacobs Univ Bremen, (Auroral field-aligned current and solar wind)

4. Auroral model and simulation

4.1 Solar wind and IMF dependent model
Pat Newell, JHU/APL (coupling function)
T. Sotirelis JHU/APL (boundary orientated)

4.2 Geomagnetic index dependent model
Y. Zhang, L. Paxton (FUV based, Kp dependent)
D.A. Hardy, Air force, (updated and particle based)
W. Lee, Korea Astronomy and Space Science Institute, (FUV based, Ap dependent)

4.3 Boundary dependent model
Sotirelis, JHU/APL, (particle, boundary based)
J.C. Jones, Northrop Grumman, (validation of auroral models) 

4.4 Global and local simulations
P.A. Damiano, Princeton Plasma Lab, {Alfven waves and electron energization)
H. Gunell, Belgian Inst. Space Aeronomy, (Vlasov simulation of auroral processes)
S.R. Kaeppler, SRI International, (modeling/observation of current within an arc)
D. Sydorenko, U of Alberta, (simulation/observation of ionupwelling and ULF waves)

5. Auroral nowcast and forecast 

5.1 Nowcast model
Pat Newll, OVATION
5.2 Short term (~hour) forecast model
Pat Newll, OVATION Prime
5.3 Long term (~day) forecast model
Syau-Yun Hsieh, JHU/APL

6. Applications
6.1 Remote sensing of magnetosphere and solar wind
(magnetotail reconnection location, magnetospheric convection, solar wind electrons)
Y. Tanaka, National Institute of polar research, (3-D auroral ionosphere)
B. Yang, U of Calgary, (auroral patch and magnetospheric convection)
G. Chisham, British Antarctic Survey (remote sensing of magnetopause and tail)
Y. Zhang, S Wing, JHU/APL, (polar rain energy dispersion and tail reconnection)
Y. Zhang, L.J. Paxton, JHU/APL, (polar rain electron and solar wind, magnetopause KH waves)

6.2 GPS scintillation
Paul Prikryl, Communication Research Center, Ottawa,(high latitude GPS phase scintillation)
Y. Ito, Nagoya Univ, (ionosphere irregularity drift speed from GNSS receivers)
A.M. smith, Univ. of Bath,UK

6.3 Auroral radar clutter
Roland Tsunoda, SRI International
H. Bahcivan, SRI Internaitonal
Y. Zhang, L.J. Paxton, B. Schaefer, JHU/APL

6.4 Radio absorption in auroral ionosphere
D.L. Detrick, Univ of Maryland
A. Wilson, Potchefstroom University, South Africa 


当当网购书 京东购书 卓越购书